Делаем мощный сабвуфер и устанавливаем его в машину своими руками: инструкции, советы. Простая методика настройки фазоинвертора Сабвуфер с щелевым фазоинвертором своими руками

Делаем мощный сабвуфер и устанавливаем его в машину своими руками: инструкции, советы. Простая методика настройки фазоинвертора Сабвуфер с щелевым фазоинвертором своими руками

Любители хорошего акустического звучания знают, что его качество в первую очередь зависит от передачи низкочастотной составляющей звука. Использование фазоинвертора способно существенно увеличить уровень звукового давления при одной и той же подводимой мощности. Но всё это возможно лишь при правильном расчёте размеров фазоинверторного (ФИ) отверстия, выравнивающего гармонические колебания и обеспечивающего качественный звук.

Виды акустических систем

Звук - это колебание, имеющее механическую природу возникновения, распространяющееся под давлением вызванным источником излучения. Акустическая система, представляющая собой звуковую колонку, преобразует электрические сигналы в механические, воспринимаемые слухом человека. Частота этих колебаний лежит в границах от 20 гц до 20 КГц. Существуют различные виды акустических систем:

Использование фазоинверторного типа даёт возможность не только расширить нижний частотный диапазон, но и повысить коэффициент полезного действия. При этом частотный диапазон не изменится. Отверстие фазоинвертора выполняется разного вида и размеров. Размещаться оно может на любой поверхности колонки. При разработке акустической системы наиболее важно выполнить правильно расчёт размера фазоинверторного короба, от чего зависит не только диапазон воспроизводимой частоты, но и качество всего звука в целом.

Принцип работы устройства

Любая колонка фазоинверторного типа имеет в своём составе отверстие - фазоинвертор. Часто он называется акустическим туннелем или портом. Принцип работы его заключается в изменении фазы звукового колебания, вызванного задней стороной диффузора на сто восемьдесят градусов. При возникновении резонанса в ящике амплитуда колебания диффузора достигает минимального значения.

Связано это с тем, что при движении вперёд динамик создаёт разрежение в середине закрытой колонки, тем самым вытесняя воздух в фазоинверторный канал и увеличивая разряжение. Поэтому на частоте резонанса механические волны излучаются через отверстие, а не диффузором динамика.

От размера и вида фазоинверторного порта зависят объём воздуха и частота резонанса, на которую настроен канал. Объём воздуха в канале начинает резонировать и усиливать воспроизведение частоты при наступлении момента, когда диффузор излучает частоту, на которую рассчитан фазоинвертор.

По своей форме классический туннель выполняется кольцевой формы. Но для увеличения полезной внутренней площади ему часто придают щелевой вид. Отказ от цилиндрической формы тоннеля позволяет сократить его длину и снизить шумы, возникающие при выбросе воздуха.

При ошибках в расчёте щелевого фазоинвертора настроить его гораздо сложнее, чем классический вид, так как он изготавливается совместно с колонкой. Сам расчёт выполняется сложнее, чем для систем закрытого типа: при этом, кроме объёма ящика, учитывается настраиваемая частота резонанса. Оптимальные размеры подбираются с учётом амплитудно-частотной характеристики колонки, а именно её равномерности.

Расчёт низкочастотного туннеля

Существует несколько способов для проведения вычислений размеров ФИ. Наиболее популярным является расчёт фазоинвертора онлайн или с использованием специализированных программ. Такие способы обычно требуют знаний множества параметров используемых динамиков. Существуют варианты и проще, но с большим расхождением конечного результата с реальным значением. Хотя в любом случае после расчёта и изготовления приходится проводить настройку.

Простая формула для вычисления

Метод вычисления заключается в использовании несложных формул и происходит методом подбора данных, когда за основу используется желаемая длина ФИ канала.

F = (C/2 π) * K, где:

При этом коэффициент K равен квадратному корню отношения S/LV, где:

  • S - площадь отверстия;
  • L - длина канала;
  • V - объем колонки.

В качестве единиц измерения везде используются метры, а для частоты - герцы. При определении значений объёма считается, что лучше выбрать узкий фазоинвертор, но такой подход неверен, ведь при этом в нём возрастает скорость движения воздуха, а это вносит искажения в звучание. Проектирование широкого и длинного ФИ также лишено смысла, ведь длина фазоинвертора не должна превышать длину волны в момент наступления резонанса. Выполнение этого правила помогает избавиться от стоячих волн.

Использование специализированных программ

Вырезанная из ватмана полоска, ширина которой совпадает с длиной трубки, в несколько витков наматывается на поверхность газетной бумаги. При этом перед каждым витком наносится эпоксидный клей. Его получают путём смешивания смолы и отвердителя согласно инструкции. После того как выполнены все витки, изделие обтягивается по кругу нитью для придания жёсткости и ставится на просушку.

Через сутки основание извлекается. В случае возникновения трудностей его можно поломать изнутри и достать частями. Изготовленный канал такого вида имеет хорошую прочность и легко подвергается дополнительной обработке. Далее полученная трубка устанавливается в отверстие колонки, но не до конца и начинается прослушивание звука. В заводских условиях используется специальный прибор. Такое устройство работает на основе мультивибратора, который настраивается на резонансную частоту динамической головки. После подключения динамика запускается генератор и длина трубы регулируется по максимуму колебанию в ней воздуха.

Аналогично можно провести настройку и самостоятельно. Для этого на вход подаётся сигнал низкой частоты. Трубка выдвигается вперёд или погружается внутрь ящика, а после оценивается объём выходящего воздуха. Установив положение максимального его выхода, излишки трубы удаляют снаружи, а сам порт герметизируют. При желании для придания конструкции оконченного вида выполняется раскрыв трубы, но можно обойтись и без этого.

Один из наиболее эффективных способов, который необходимо использовать для богатого и качественного баса – это добавление к уже существующей акустической системе сабвуфера. Именно сабвуфер и добавление фазоинвертора для сабвуфера позволяют значительно расширить и сделать богаче низкие частоты. В конечном итоге, это поможет не просто улучшить качество звучания звука, но и делать это вне зависимости от выбранной для прослушивания музыки.

На данный момент существует два варианта басов – гулкий бас и бас плотный. Выбирать устройство фазоинвертора для сабвуфера необходимо на основании предпочтений в музыке. На протяжении долгого времени на большом количестве форумов и Интернет-ресурсов обсуждались вопросы: что лучше использовать фазоинвертор для сабвуфера или закрытый корпус?

Одни уверены в том, что вентилируемые сабвуферы, или фазоинверторы необходимы только для того, чтобы улучшать звуковые эффекты, поэтому для музыки они годятся. Другие же уверены в том, что закрытые боксы отличаются большей музыкальностью, хотя им не хватает басов и глубины.

Оба вида сабвуферов – фазоинвертор и закрытый корпус, отличаются своими достоинствами и недостатками. Поэтому необходимо сделать выбор на основании плюсов и личных предпочтений в музыкальных жанрах.

Определение и особенности

Фазоинвертор – это тип акустической системы и ее оформление, которое объединяет в себе такие качества:

  1. Высокое качество звука при воспроизведении.
  2. Внушительная громкость.
  3. Простота в эксплуатации и настройке фазоинвертора вне зависимости от модели и места расположения.
  4. Небольшие размеры.

Принцип работы фазоинвертора

Фазоинвертор, как корпус с некоторыми отверстиями, позволяет воспроизводить действительно гулкие и громкие басы с хорошими, высокими энергическими показателями реверберации, чего не скажешь о закрытых боксах. Достигается такое высокое качество басов за счет негерметичного корпуса, а также отсутствия каких-либо средств дополнительной обработки звука.

Также в фазоинверторе отсутствует цифровой процессор, а это значит, что единственная особенность этой конструкции – это как раз использование негерметичного корпуса. В большинстве случаев негерметичность достигается тем, что в корпусе делается небольшое отверстие. В этом заключается главное отличие фазоинвертора от закрытых корпусов аудиосистем для транспортного средства.

Пускай у фазоинвертора очень простой и даже немного примитивный дизайн и внешний вид, однако эта простота никак не отображается и не связана с простотой настройки аппарата. Другими словами, в некоторых случаях бывает достаточно сложно правильно настроить фазоинвертор на сабвуфер для того, чтобы получить качественный, сбалансированный и красивый звук при проигрывании музыкальных композиций на выходе.

Главная хитрость фазоинвертора для сабвуфера и его настройки заключается в правильно выбранных габаритах корпусов, а также в правильном подборе отверстий в акустической системе для машины.

Вентиляционные отверстия, на основании использования которых и строится вся работа фазоинвертора, занимаются перенаправлением звуков из задней области конуса, одновременно с этим добавляя к этим звукам тот звук, который исходит от передней части конуса. На основании сочетания этих двух источников звучания при воспроизведении и получается сильно увеличить басы и их громкость.

Читайте также

Характеристики JBL bandpass GT-12BP

Подобная схема примечательна и полезна тем, что благодаря ее действию можно использовать очень скромный как по габаритам, так и по показателям внешний усилитель для того, чтобы на выходе получились отличные и качественные результаты звучания.

Еще одно интересное преимущество фазоинверторов, которое будет полезно потребителю, заключается в продолжительном сроке эксплуатации сабвуфера. Это происходит за счет потоков воздуха, охлаждающих динамики.

Основные преимущества и недостатки фазоинверторов

К основным преимуществам фазоинверторов для сабвуферов в транспортных средствах можно отнести следующие:

  1. Уменьшение уровня и показателей вибрации и искажений диффузора.
  2. Более качественный, четкий и приятный для человеческого восприятия звук. Правда, относится это не к каждому жанру и типу композиций, а к определенным разновидностям музыки. Из-за воздушных потоков, поступающих прямо в отверстие вентиляции, звук будет напоминать небольшой, едва слышимый свист. Этот свист очень похож на тот, который получается, когда человек дует на горлышко пустой бутылки.

К основным преимуществам фазоинверторов для сабвуферов в автомобилях можно отнести следующие:

  1. Звуки при воспроизведении композиции, которые получаются при помощи вентиляционных каналов, могут стать причиной причинения вреда, а не пользы, но это относится не ко всем видам музыки, а только к некоторым из них. Как было отмечено выше, фазоинверторы – это тот комплекс в общей акустической системе транспортного средства, который не сможет подойти под абсолютно любую музыку.
  2. Фазоинвертор — это достаточно чувствительный вид корпуса, а в особенности его чувствительность распространяется на изменения в климате. Больше всего работа фазоинвертора зависит от таких климатических показателей, как температурные показатели, а также уровень и процент влажности.
  3. Фазоинвертор и тип корпуса, как ни странно, способствует физическому переутомлению человека.
  4. Из-за постоянного высокого давления внутри корпуса фазоинвертора система должна быть очень прочной. Все это говорит о том, что ее сложнее делать и продавать, а себестоимость входит в итоговый ценник.

Что можно сказать о фазоинверторе?

Фазоинвертор в сабвуфере отличается расплывчатым басом, что понравится далеко не всем. С другой же стороны, если нужно, чтобы басы уходили «в землю», именно такая система акустики подойдет просто идеально.

От редакции: Статья итальянского специалиста-акустика, воспроизводимая здесь с благословения автора, в оригинале называлась Teoria e pratica del condotto di accordo. То есть, в буквальном переводе – «Теория и практика фазоинвертора». Заголовок этот, на наш взгляд, соответствовал содержанию статьи только формально. Действительно, речь идет о соотношении простейшей теоретической модели фазоинвертора и тех сюрпризов, которые готовит практика. Но это – если формально и поверхностно. А по существу, статья содержит ответ на вопросы, которые возникают, судя по редакционной почте, сплошь и рядом при расчете и изготовлении сабвуфера-фазоинвертора. Вопрос первый: «Если рассчитать фазоинвертор по формуле, известной уже давным-давно, получится ли у готового фазоинвертора расчетная частота?» Наш итальянский коллега, съевший на своем веку собак эдак с десяток на фазоинверторах, отвечает: «Нет, не получится». А потом объясняет, почему и, что самое ценное, на сколько именно не получится. Вопрос второй: «Рассчитал тоннель, а он такой длинный, что никуда не помещается. Как быть?» И здесь синьор предлагает настолько оригинальные решения, что именно эту сторону его трудов мы и вынесли в заголовок. Так что ключевое слово в новом заголовке надо понимать не по-новорусски (иначе мы бы написали: «короче – фазоинвертор»), а совершенно буквально. Геометрически. А теперь слово для выступления имеет синьор Матараццо.

Фазоинвертор: короче!

Жан-Пьеро МАТАРАЦЦО Перевод с итальянского Е. Журковой

Об авторе: Жан-Пьеро Матараццо родился в 1953 г. в городе Авеллино, Италия. С начала 70-х работает в области профессиональной акустики. Долгие годы был ответственным за тестирование акустических систем для журнала «Suono» («Звук»). В 90-х годах разработал ряд новых математических моделей процесса излучения звука диффузорами громкоговорителей и несколько проектов акустических систем для промышленности, включая популярную в Италии модель «Опера». С конца 90-х активно сотрудничает с журналами «Audio Review», «Digital Video» и, что для нас наиболее важно, «ACS» («Audio Car Stereo»). Во всех трех он – главный по измерению параметров и тестированию акустики. Что еще?.. Женат. Два сынишки растут, 7 годиков и 10.

Рис 1. Схема резонатора Гельмгольца. То, от чего все происходит.

Рис 2. Классическая конструкция фазоинвертора. При этом часто не учитывают влияние стенки.

Рис 3. Фазоинвертор с тоннелем, концы которого находятся в свободном пространстве. Здесь влияния стенок нет.

Рис 4. Можно вывести тоннель полностью наружу. Здесь опять произойдет «виртуальное удлинение».

Рис 5. Можно получить «виртуальное удлинение» на обоих концах тоннеля, если сделать еще один фланец.

Рис 6. Щелевой тоннель, расположенный далеко от стенок ящика.

Рис 7. Щелевой тоннель, расположенный вблизи стенки. В результате влияния стенки его «акустическая» длина получается больше геометрической.

Рис 8. Тоннель в форме усеченного конуса.

Рис 9. Основные размеры конического тоннеля.

Рис 10. Размеры щелевого варианта конического тоннеля.

Рис 11. Экспоненциальный тоннель.

Рис 12. Тоннель в форме песочных часов.

Рис 13. Основные размеры тоннеля в форме песочных часов.

Рис 14. Щелевой вариант песочных часов.

Магические формулы

Одно из наиболее часто встречающихся пожеланий в электронной почте автора – привести «магическую формулу», по которой читатель ACS мог бы сам рассчитать фазоинвертор. Это, в принципе, нетрудно. Фазоинвертор представляет собой один из случаев реализации устройства под названием «резонатор Гельмгольца». Формула его расчета не намного сложнее самой распространенной и доступной модели такого резонатора. Пустая бутылочка из-под кока-колы (только обязательно бутылка, а не алюминиевая банка) – именно такой резонатор, настроенный на частоту 185 Гц, это проверено. Впрочем, резонатор Гельмгольца намного древнее даже этой, постепенно выходящей из употребления упаковки популярного напитка. Однако и классическая схема резонатора Гельмгольца схожа с бутылкой (рис. 1). Для того чтобы такой резонатор работал, важно, чтобы у него был объем V и тоннель с площадью поперечного сечения S и длиной L. Зная это, частоту настройки резонатора Гельмгольца (или фазоинвертора, что одно и то же) теперь можно рассчитать по формуле:

где Fb – частота настройки в Гц, с – скорость звука, равная 344 м/с, S – площадь тоннеля в кв. м, L – длина тоннеля в м, V – объем ящика в куб. м. = 3,14, это само собой.

Эта формула действительно магическая, в том смысле, что настройка фазоинвертора не зависит от параметров динамика, который будет в него установлен. Объем ящика и размеры тоннеля частоту настройки определяют раз и навсегда. Все, казалось бы, дело сделано. Приступаем. Пусть у нас есть ящик объемом 50 литров. Мы хотим превратить его в корпус фазоинвертора с настройкой на 50 Гц. Диаметр тоннеля решили сделать 8 см. По только что приведенной формуле частота настройки 50 Гц получится, если длина тоннеля будет равна 12,05 см. Аккуратно изготавливаем все детали, собираем их в конструкцию, как на рис. 2, и для проверки измеряем реально получившуюся резонансную частоту фазоинвертора. И видим, к своему удивлению, что она равна не 50 Гц, как полагалось бы по формуле, а 41 Гц. В чем дело и где мы ошиблись? Да нигде. Наш свежепостроенный фазоинвертор оказался бы настроен на частоту, близкую к полученной по формуле Гельмгольца, если бы он был сделан, как показано на рис. 3. Этот случай ближе всего к идеальной модели, которую описывает формула: здесь оба конца тоннеля «висят в воздухе», относительно далеко от каких-либо преград. В нашей конструкции один из концов тоннеля сопрягается со стенкой ящика. Для воздуха, колеблющегося в тоннеле, это небезразлично, из-за влияния «фланца» на конце тоннеля происходит как бы его виртуальное удлинение. Фазоинвертор окажется настроенным так, как если бы длина тоннеля была равна 18 см, а не 12, как на самом деле.

Заметим, что то же самое произойдет, если тоннель полностью разместить снаружи ящика, снова совместив один его конец со стенкой (рис. 4). Существует эмпирическая зависимость «виртуального удлинения» тоннеля в зависимости от его размеров. Для круглого тоннеля, один срез которого расположен достаточно далеко от стенок ящика (или других препятствий), а другой находится в плоскости стенки, это удлинение приблизительно равно 0,85D.

Теперь, если подставить в формулу Гельмгольца все константы, ввести поправку на «виртуальное удлинение», а все размеры выразить в привычных единицах, окончательная формула для длины тоннеля диаметром D, обеспечивающего настройку ящика объемом V на частоту Fb, будет выглядеть так:

Здесь частота – в герцах, объем – в литрах, а длина и диаметр тоннеля – в миллиметрах, как нам привычнее.

Полученный результат ценен не только тем, что позволяет на этапе расчета получить значение длины, близкое к окончательной, дающей требуемое значение частоты настройки, но и тем, что открывает определенные резервы укорочения тоннеля. Почти один диаметр мы уже выиграли. Можно укоротить тоннель еще больше, сохранив ту же частоту настройки, если сделать фланцы на обоих концах, как показано на рис. 5.

Теперь, кажется, все учтено, и, вооруженные этой формулой, мы представляемся себе всесильными. Именно здесь нас и ждут трудности.

Первые трудности

Первая (и главная) трудность заключается в следующем: если относительно небольшой по объему ящик требуется настроить на довольно низкую частоту, то, подставив в формулу для длины тоннеля большой диаметр, мы и длину получим большую. Попробуем подставить диаметр поменьше – и все получается отлично. Большой диаметр требует большой длины, а маленький – как раз небольшой. Что же тут плохого? А вот что. Двигаясь, диффузор динамика своей тыльной стороной «проталкивает» практически несжимаемый воздух через тоннель фазоинвертора. Поскольку объем колеблющегося воздуха постоянен, то скорость воздуха в тоннеле будет во столько раз больше колебательной скорости диффузора, во сколько раз площадь сечения тоннеля меньше площади диффузора. Если сделать тоннель в десятки раз меньшего размера, чем диффузор, скорость потока в нем окажется большой, и, когда она достигнет 25 – 27 метров в секунду, неизбежно появление завихрений и струйного шума. Великий исследователь акустических систем Р. Смолл показал, что минимальное сечение тоннеля зависит от диаметра динамика, наибольшего хода его диффузора и частоты настройки фазоинвертора. Смолл предложил совершенно эмпирическую, но безотказно работающую формулу для вычисления минимального размера тоннеля:

Формулу свою Смолл вывел в привычных для него единицах, так что диаметр динамика Ds, максимальный ход диффузора Xmax и минимальный диаметр тоннеля Dmin выражаются в дюймах. Частота настройки фазоинвертора – как обычно, в герцах.

Теперь все выглядит не так радужно, как прежде. Очень часто оказывается, что, если правильно выбрать диаметр тоннеля, он выходит невероятно длинным. А если уменьшить диаметр, появляется шанс, что уже на средней мощности тоннель «засвистит». Помимо собственно струйных шумов, тоннели небольшого диаметра обладают еще и склонностью к так называемым «органным резонансам», частота которых намного выше частоты настройки фазоинвертора и которые возбуждаются в тоннеле турбулентностями при больших скоростях потока.

Столкнувшись с такой дилеммой, читатели ACS обычно звонят в редакцию и просят подсказать им решение. У меня их три: простое, среднее и экстремальное.

Простое решение для небольших проблем

Когда расчетная длина тоннеля получается такой, что он почти помещается в корпусе и требуется лишь незначительно сократить его длину при той же настройке и площади сечения, я рекомендую вместо круглого использовать щелевой тоннель, причем размещать его не посреди передней стенки корпуса (как на рис. 6), а вплотную в одной из боковых стенок (как на рис. 7). Тогда на конце тоннеля, находящемся внутри ящика, будет сказываться эффект «виртуального удлинения» из-за находящейся рядом с ним стенки. Опыты показывают, что при неизменной площади сечения и частоте настройки тоннель, показанный на рис. 7, получается примерно на 15% короче, чем при конструкции, как на рис. 6. Щелевой фазоинвертор, в принципе, менее склонен к органным резонансам, чем круглый, но, чтобы обезопасить себя еще больше, я рекомендую устанавливать внутри тоннеля звукопоглощающие элементы, в виде узких полосок фетра, наклеенных на внутреннюю поверхность тоннеля в районе трети его длины. Это – простое решение. Если его недостаточно, придется перейти к среднему.

Среднее решение для проблем побольше

Решение промежуточной сложности заключается в использовании тоннеля в форме усеченного конуса, как на рис. 8. Мои эксперименты с такими тоннелями показали, что здесь можно уменьшить площадь сечения входного отверстия по сравнению с минимально допустимой по формуле Смолла без опасности возникновения струйных шумов. Кроме того, конический тоннель намного менее склонен к органным резонансам, нежели цилиндрический.

В 1995 году я написал программу для расчета конических тоннелей. Она заменяет конический тоннель последовательностью цилиндрических и путем последовательных приближений вычисляет длину, необходимую для замены обычного тоннеля постоянного сечения. Программа эта сделана для всех желающих, и ее можно взять на сайте журнала ACS http://www.audiocarstereo.it/ в разделе ACS Software. Маленькая программка, работает под DOS, можно скачать и посчитать самому. А можно поступить по-другому. При подготовке русской редакции этой статьи результаты вычислений по программе CONICO были сведены в таблицу, из которой можно взять готовый вариант. Таблица составлена для тоннеля диаметром 80 мм. Это значение диаметра подходит для большинства сабвуферов с диаметром диффузора 250 мм. Рассчитав по формуле требуемую длину тоннеля, найдите это значение в первом столбце. Например, по вашим расчетам оказалось, что нужен тоннель длиной 400 мм, например, для настройки ящика объемом 30 литров на частоту 33 Гц. Проект нетривиальный, и разместить такой тоннель внутри такого ящика будет непросто. Теперь смотрим в следующие три столбца. Там приведены рассчитанные программой размеры эквивалентного конического тоннеля, длина которого будет уже не 400, а всего 250 мм. Совсем другое дело. Что означают размеры в таблице, показано на рис. 9.

Таблица 2 составлена для исходного тоннеля диаметром 100 мм. Это подойдет для большинства сабвуферов с головкой диаметром 300 мм.

Если решите пользоваться программой самостоятельно, помните: тоннель в форме усеченного конуса делается с углом наклона образующей a от 2 до 4 градусов. Этот угол больше 6 – 8 градусов делать не рекомендуется, в этом случае возможно возникновение завихрений и струйных шумов на входном (узком) конце тоннеля. Однако и при небольшой конусности уменьшение длины тоннеля получается довольно значительным.

Тоннель в форме усеченного конуса не обязательно должен иметь круглое сечение. Как и обычный, цилиндрический, его иногда удобнее делать в виде щелевого. Даже, как правило, удобнее, ведь тогда он собирается из плоских деталей. Размеры щелевого варианта конического тоннеля приведены в следующих столбцах таблицы, а что эти размеры означают, показано на рис. 10.

Замена обычного тоннеля коническим способна решить много проблем. Но не все. Иногда длина тоннеля получается настолько большой, что укорочения его даже на 30 – 35% недостаточно. Для таких тяжелых случаев есть...

Экстремальное решение для больших проблем

Экстремальное решение заключается в применении тоннеля с экспоненциальными обводами, как показано на рис. 11. У такого тоннеля площадь сечения сначала плавно уменьшается, а потом так же плавно возрастает до максимальной. С точки зрения компактности для данной частоты настройки, устойчивости к струйным шумам и органным резонансам экспоненциальный тоннель не имеет себе равных. Но он не имеет себе равных и по сложности изготовления, даже если рассчитать его обводы по такому же принципу, как это было сделано в случае конического тоннеля. Для того чтобы преимуществами экспоненциального тоннеля все же можно было воспользоваться на практике, я придумал его модификацию: тоннель, который я назвал «песочные часы» (рис. 12). Тоннель-песочные часы состоит из цилиндрической секции и двух конических, откуда внешнее сходство с древним прибором для измерения времени. Такая геометрия позволяет укоротить тоннель по сравнению с исходным, постоянного сечения, по меньшей мере, в полтора раза, а то и больше. Для расчета песочных часов я тоже написал программу, ее можно найти там же, на сайте ACS. И так же, как для конического тоннеля, здесь приводится таблица с готовыми вариантами расчета.

Что означают размеры в таблицах 3 и 4, станет ясно из рис. 13. D и d – это диаметр цилиндрической секции и наибольший диаметр конической секции, соответственно, L1 и L2 – длины секций. Lmax – полная длина тоннеля в форме песочных часов, приводится просто для сравнения, насколько короче его удалось сделать, а вообще, это L1 + 2L2.

Технологически песочные часы круглого поперечного сечения делать не всегда просто и удобно. Поэтому и здесь можно выполнить его в виде профилированной щели, получится, как на рис. 14. Для замены тоннеля диаметром 80 мм я рекомендую высоту щели выбрать равной 50 мм, а для замены 100-миллиметрового цилиндрического тоннеля – равной 60 мм. Тогда ширина секции постоянного сечения Wmin и максимальная ширина на входе и выходе тоннеля Wmax будут такими, как в таблице (длины секций L1 и L2 – как в случае с круглым сечением, здесь ничего не меняется). Если понадобится, высоту щелевого тоннеля h можно изменить, одновременно скорректировав и Wmin, Wmax так, чтобы значения площади поперечного сечения (h.Wmin, h.Wmax) остались неизменными.

Вариант фазоинвертора с тоннелем в форме песочных часов я применил, например, когда делал сабвуфер для домашнего театра с частотой настройки 17 Гц. Расчетная длина тоннеля получилась больше метра, а рассчитав «песочные часы», я смог сократить ее почти вдвое, при этом шумов не было даже при мощности около 100 Вт. Надеюсь, вам это тоже поможет...

У меня имеется неплохой усилитель мощности. Задался я целью изготовить для него качественные акустические системы. Так как выходная мощность моего усилителя небольшая, мне понадобились высокочувствительные громкоговорители. У меня была пара рупорных громкоговорителей Fostex.

FE206En имеет номинальную чувствительность 96дб/1Вт/1м. Динамики имеют обратный рупор и при малой мощности они могут сделать «буги» очень громко! Бас от этих динамиков очень впечатляет. Настолько, что мне пришлось сделать пару аудио колонок с фазоинвертором.

Двойной Бас-Рефлекс (double bass-reflex). Подробное описание изготовления акустических систем с фазоинвертором

Двойной бас-рефлекс (double bass-reflex (DBR) акустической системы является вариацией стандартной бас-рефлекс (BR) и предназначен для достижения дальнейшего расширения низких частот. Усиление для басов достигается за счет использования дополнительной камеры в акустической системе. Другие преимущества динамика с двойным фазоинвертором по сравнению с обычной бас-рефлекс системы являются: уменьшение искажений. Использование дополнительной камеры в корпусе колонки также уменьшает вероятность возникновения резонансов.
Корпус колонки обычно заполняется толстым демпфирующим материалом — рыхлый синтетический или шерстяной заполнитель. Наполнитель используется для демпфирования отраженных волн и минимизации стоячих волн, а также отражений внутри корпуса громкоговорителя.

Размеры акустической системы

На фотографиях ниже показаны динамики Fostex FE206En . Чрезвычайно большой магнит громкоговорителя я покрыл алюминиевой фольгой для уменьшения отражения звука от задней части корпуса .

Более подробно: можете загрузить даташит — (Формат PDF 488kB).

Изготовление корпуса в картинках

Кто хоть раз попробовал сам сделать аудио-систему знает , что нужно больше знать , чем просто посмотреть схему и пользоваться паяльником . Необходимые навыки понадобятся от простого сверления отверстий до сложных плотницких работ . Как у меня получилось не судите строго 🙂

Когда корпуса были готовы осталось только зашлифовать мелкой наждачной бумагой перед нанесением слоя грунтовки. Наносим несколько слоёв с временным промежутком для высыхания. После двух часов высыхания наносим сверху чёрную атласную отделку.

Завершающий этап — сборка

Верхнюю часть колонки заполняем звукопоглощающим наполнителем . Нижнюю часть оставляем пустой .

В заключительный этапы сборки входит электрическое соединение проводами динамик — фильтр — разъём .

Схема простая: один дроссель и один резистор параллельно друг другу и последовательно с динамиком.

На рисунке ниже показаны типовые схемы фильтров колонки.

Если хотите Вы можете воспользоваться онлайн калькулятором для определения параметров дросселя и резистора, исходя из ширины колонки, дефлектора и характеристик динамика.

Использованы материалы сайта:diyaudioprojects.com


П О П У Л Я Р Н О Е:

    Забор для дачи из профнастила своими руками

    При строительстве заборов в последнее время очень часто стали использовать профнастил. Он прочный, эстетичный, недорогой и не поддающийся коррозии, к тому же простой и удобный в монтаже. Часто делают заборы для дома, дачи из профлиста , которые совсем не сложно установить своими руками.

Корпус для сабвуфера — фазоинвертор (ФИ)

В рамках обсуждения выбора сабвуфера рассмотрим такой корпус как фазоинвертор.

Фазоинвертор, в отличии от , имеет порт с помощью которого разворачивает фазу сигнала тыльной стороны динамика таким образом увеличивая КПД в 2 раза.

Принцип работы фазоинвертора

Для какой музыки подходит фазоинвертор

отличается мощным и объемным басом , а в районе частоты настройки имеет горб (значительное повышение громкости звучания).

Пример АЧХ фазоинвертора

По этому ФИ подходит для музыки , в которой много не быстрого баса, где низкие частоты это основа композиций . Выбирайте фазоинвертор если вам нравятся дабстэп, трипхоп, прочая медленная электронщина, рэп, R&B и т.п.

Примечание: настройка фазоинвертора это частота, на которую приходится пик , регулируется изменением длины и площади порта, а так же отношением объема порта к объему корпуса.

Какой динамик подходит для фазоинвертора

Чтобы выбрать сабвуфер для фазоинвертора нужно отталкиваться от . Обычно эти данные есть в документах, но если у вас их нет, то параметры найдутся в интернете.

Для того, что бы понять подходит ли динамик для ФИ проведите не хитрые расчеты. Поделите значение на значение и если ответ получится от 60 и до 100, то такой саб будет оптимальным для фазоинвертора.

К примеру — у динамика SUNDOWN AUDIO E-12 V3 Fs = 32.4 Гц, а Qts = 0.37.

Fs / Qts = 32.4 / 0.37 = 87,6 — такой сабвуфер вполне подходит для ФИ.

Если значение для вашего динамика выходит за пределы диапазона 60-100 возможно стоит подыскать ему другое оформление с помощью . Обратите внимание на то, что приведенная таблица не запрещает использовать для динамиков корпусы, не соответствующие значению Fs / Qts. Она показывает варианты, которые точно будут хорошо работать.

Виды фазоинверторов

Порт фазоинвертора — основной элемент корпуса, он может быть круглым (труба) или прямоугольным (щель).

Щелевой порт

Круглый порт (труба)

Нельзя однозначно сказать какой из этих портов лучше. Делают то, что удобнее или то, что больше нравится. Единственный момент, что в спорте (соревнования по звуковому давлению) чаще используются трубы , так как с их применением проще меняется настройка фазоинвертора, за счет изменения длины порта.

Отдельно стоит отметить такой тип, как пассивный излучатель. (корректней — пассивный отражатель) есть тот же фазоинвертор и принцип его работы тот же. Применяется в тех случаях, когда желаемый порт для ФИ не устраивает по габаритам. В пассивном излучателе вместо порта используется динамик без магнитной системы .

Принцип работы пассивного излучателя

Достоинства и недостатки ФИ

Плюсы:

  • Высокий КПД (грубо — в 2 раза громче ЗЯ);
  • Может дать много громкого баса;
  • Можно настроить для своих музыкальных предпочтений.

Минусы:

  • Большие габариты (по сравнению с ЗЯ);
  • Относительная сложность расчета.

Особенности

Материалы

Требования к материалам и сборке стандартны. Фазоинверторный короб должен быть крепким, герметичным и не давать вибраций. Материал — фанера или МДФ от 18 мм. и толще.

Обратите внимание на то, что все каналы ввода проводов, клеммники и т.п. должны быть надежно загерметизированы , внутренние перегородки (стенки порта) не должны иметь щелей .

Скругления порта фазоинвертора

Если щелевой порт длинный и имеет повороты, то в углах могут возникать застойные зоны, для избежания этого изгибы сглаживаются — в результате повышается КПД, так как снижается сопротивление движению воздуха . На слух определить улучшение качества довольно сложно, но для борьбы за высокий результат в звуковом давлении это решение работает.

Варианты сглаживая портов

© 2024 iteleradio.ru - Твой компьютер