Шифры замены. Как расшифровать секретный код Интересные шифровки

Шифры замены. Как расшифровать секретный код Интересные шифровки

01.11.2023

В шифрах замены (или шифрах подстановки), в отличие от , элементы текста не меняют свою последовательность, а изменяются сами, т.е. происходит замена исходных букв на другие буквы или символы (один или несколько) по неким правилам.

На этой страничке описаны шифры, в которых замена происходит на буквы или цифры. Когда же замена происходит на какие-то другие не буквенно-цифровые символы, на комбинации символов или рисунки, это называют прямым .

Моноалфавитные шифры

В шифрах с моноалфавитной заменой каждая буква заменяется на одну и только одну другую букву/символ или группу букв/символов. Если в алфавите 33 буквы, значит есть 33 правила замены: на что менять А, на что менять Б и т.д.

Такие шифры довольно легко расшифровать даже без знания ключа. Делается это при помощи частотного анализа зашифрованного текста - надо посчитать, сколько раз каждая буква встречается в тексте, и затем поделить на общее число букв. Получившуюся частоту надо сравнить с эталонной. Самая частая буква для русского языка - это буква О, за ней идёт Е и т.д. Правда, работает частотный анализ на больших литературных текстах. Если текст маленький или очень специфический по используемым словам, то частотность букв будет отличаться от эталонной, и времени на разгадывание придётся потратить больше. Ниже приведена таблица частотности букв (то есть относительной частоты встречаемых в тексте букв) русского языка, рассчитанная на базе НКРЯ .

Использование метода частотного анализа для расшифровки шифрованных сообщений красиво описано во многих литературных произведениях, например, у Артура Конана Дойля в романе « » или у Эдгара По в « ».

Составить кодовую таблицу для шифра моноалфавитной замены легко, но запомнить её довольно сложно и при утере восстановить практически невозможно, поэтому обычно придумывают какие-то правила составления таких кодовых страниц. Ниже приведены самые известные из таких правил.

Случайный код

Как я уже писал выше, в общем случае для шифра замены надо придумать, какую букву на какую надо заменять. Самое простое - взять и случайным образом перемешать буквы алфавита, а потом их выписать под строчкой алфавита. Получится кодовая таблица. Например, вот такая:

Число вариантов таких таблиц для 33 букв русского языка = 33! ≈ 8.683317618811886*10 36 . С точки зрения шифрования коротких сообщений - это самый идеальный вариант: чтобы расшифровать, надо знать кодовую таблицу. Перебрать такое число вариантов невозможно, а если шифровать короткий текст, то и частотный анализ не применишь.

Но для использования в квестах такую кодовую таблицу надо как-то по-красивее преподнести. Разгадывающий должен для начала эту таблицу либо просто найти, либо разгадать некую словесно-буквенную загадку. Например, отгадать или решить .

Ключевое слово

Один из вариантов составления кодовой таблицы - использование ключевого слова. Записываем алфавит, под ним вначале записываем ключевое слово, состоящее из неповторяющихся букв, а затем выписываем оставшиеся буквы. Например, для слова «манускрипт» получим вот такую таблицу:

Как видим, начало таблицы перемешалось, а вот конец остался неперемешенным. Это потому, что самая «старшая» буква в слове «манускрипт» - буква «У», вот после неё и остался неперемешенный «хвост». Буквы в хвосте останутся незакодированными. Можно оставить и так (так как большая часть букв всё же закодирована), а можно взять слово, которое содержит в себе буквы А и Я, тогда перемешаются все буквы, и «хвоста» не будет.

Само же ключевое слово можно предварительно тоже загадать, например при помощи или . Например, вот так:

Разгадав арифметический ребус-рамку и сопоставив буквы и цифры зашифрованного слова, затем нужно будет получившееся слово вписать в кодовую таблицу вместо цифр, а оставшиеся буквы вписать по-порядку. Получится вот такая кодовая таблица:

Атбаш

Изначально шифр использовался для еврейского алфавита, отсюда и название. Слово атбаш (אתבש) составлено из букв «алеф», «тав», «бет» и «шин», то есть первой, последней, второй и предпоследней букв еврейского алфавита. Этим задаётся правило замены: алфавит выписывается по порядку, под ним он же выписывается задом наперёд. Тем самым первая буква кодируется в последнюю, вторая - в предпоследнюю и т.д.

Фраза «ВОЗЬМИ ЕГО В ЭКСЕПШН» превращается при помощи этого шифра в «ЭРЧГТЦ ЪЬР Э ВФНЪПЖС».

ROT1

Этот шифр известен многим детям. Ключ прост: каждая буква заменяется на следующую за ней в алфавите. Так, A заменяется на Б, Б на В и т.д., а Я заменяется на А. «ROT1» значит «ROTate 1 letter forward through the alphabet» (англ. «поверните/сдвиньте алфавит на одну букву вперед»). Сообщение «Хрюклокотам хрюклокотамит по ночам» станет «Цсялмплпубн цсялмплпубнйу рп опшбн». ROT1 весело использовать, потому что его легко понять даже ребёнку, и легко применять для шифрования. Но его так же легко и расшифровать.

Шифр Цезаря

Шифр Цезаря - один из древнейших шифров. При шифровании каждая буква заменяется другой, отстоящей от неё в алфавите не на одну, а на большее число позиций. Шифр назван в честь римского императора Гая Юлия Цезаря, использовавшего его для секретной переписки. Он использовал сдвиг на три буквы (ROT3). Шифрование для русского алфавита многие предлагают делать с использованием такого сдвига:

Я всё же считаю, что в русском языке 33 буквы, поэтому предлагаю вот такую кодовую таблицу:

Интересно, что в этом варианте в алфавите замены читается фраза «где ёж?»:)

Но сдвиг ведь можно делать на произвольное число букв - от 1 до 33. Поэтому для удобства можно сделать диск, состоящий из двух колец, вращающихся относительно друг друга на одной оси, и написать на кольцах в секторах буквы алфавита. Тогда можно будет иметь под рукой ключ для кода Цезаря с любым смещением. А можно совместить на таком диске шифр Цезаря с атбашем, и получится что-то вроде этого:

Собственно, поэтому такие шифры и называются ROT - от английского слова «rotate» - «вращать».

ROT5

В этом варианте кодируются только цифры, остальной текст остаётся без изменений. Производится 5 замен, поэтому и ROT5: 0↔5, 1↔6, 2↔7, 3↔8, 4↔9.

ROT13

ROT13 - это вариация шифра Цезаря для латинского алфавита со сдвигом на 13 символов. Его часто применяют в интернете в англоязычных форумах как средство для сокрытия спойлеров, основных мыслей, решений загадок и оскорбительных материалов от случайного взгляда.

Латинский алфавит из 26 букв делится на две части. Вторая половина записывается под первой. При кодировании буквы из верхней половины заменяются на буквы из нижней половины и наоборот.

ROT18

Всё просто. ROT18 - это комбинация ROT5 и ROT13:)

ROT47

Существует более полный вариант этого шифра - ROT47. Вместо использования алфавитной последовательности A–Z, ROT47 использует больший набор символов, почти все отображаемые символы из первой половины ASCII -таблицы. При помощи этого шифра можно легко кодировать url, e-mail, и будет непонятно, что это именно url и e-mail:)

Например, ссылка на этот текст зашифруется вот так: 9EEAi^^?@K5C]CF^82>6D^BF6DE^4CJAE^4:A96C^K2>6?2nURC@Ecf. Только опытный разгадывальщик по повторяющимся в начале текста двойкам символов сможет додуматься, что 9EEAi^^ может означать HTTP:⁄⁄ .

Квадрат Полибия

Полибий - греческий историк, полководец и государственный деятель, живший в III веке до н.э. Он предложил оригинальный код простой замены, который стал известен как «квадрат Полибия» (англ. Polybius square) или шахматная доска Полибия. Данный вид кодирования изначально применялся для греческого алфавита, но затем был распространен на другие языки. Буквы алфавита вписываются в квадрат или подходящий прямоугольник. Если букв для квадрата больше, то их можно объединять в одной ячейке.

Такую таблицу можно использовать как в шифре Цезаря. Для шифрования на квадрате находим букву текста и вставляем в шифровку нижнюю от неё в том же столбце. Если буква в нижней строке, то берём верхнюю из того же столбца. Для кириллицы можно использовать таблицу РОТ11 (аналог шифра Цезаря со сдвигом на 11 символов):

Буквы первой строки кодируются в буквы второй, второй - в третью, а третьей - в первую.

Но лучше, конечно, использовать «фишку» квадрата Полибия - координаты букв:

    Под каждой буквой кодируемого текста записываем в столбик две координаты (верхнюю и боковую). Получится две строки. Затем выписываем эти две строки в одну строку, разбиваем её на пары цифр и используя эти пары как координаты, вновь кодируем по квадрату Полибия.

    Можно усложнить. Исходные координаты выписываем в строку без разбиений на пары, сдвигаем на нечётное количество шагов, разбиваем полученное на пары и вновь кодируем.

Квадрат Полибия можно создавать и с использованием кодового слова. Сначала в таблицу вписывается кодовое слово, затем остальные буквы. Кодовое слово при этом не должно содержать повторяющихся букв.

Вариант шифра Полибия используют в тюрьмах, выстукивая координаты букв - сначала номер строки, потом номер буквы в строке.

Стихотворный шифр

Этот метод шифрования похож на шифр Полибия, только в качестве ключа используется не алфавит, а стихотворение, которое вписывается построчно в квадрат заданного размера (например, 10×10). Если строка не входит, то её «хвост» обрезается. Далее полученный квадрат используется для кодирования текста побуквенно двумя координатами, как в квадрате Полибия. Например, берём хороший стих «Бородино» Лермонтова и заполняем таблицу. Замечаем, что букв Ё, Й, Х, Ш, Щ, Ъ, Э в таблице нет, а значит и зашифровать их мы не сможем. Буквы, конечно, редкие и могут не понадобиться. Но если они всё же будут нужны, придётся выбирать другой стих, в котором есть все буквы.

РУС/LAT

Наверное, самый часто встречающийся шифр:) Если пытаться писать по-русски, забыв переключиться на русскую раскладку, то получится что-то типа этого: Tckb gsnfnmcz gbcfnm gj-heccrb? pf,sd gthtrk.xbnmcz yf heccre. hfcrkflre? nj gjkexbncz xnj-nj nbgf "njuj^ Ну чем не шифр? Самый что ни на есть шифр замены. В качестве кодовой таблицы выступает клавиатура.

Таблица перекодировки выглядит вот так:

Литорея

Литорея (от лат. littera - буква) - тайнописание, род шифрованного письма, употреблявшегося в древнерусской рукописной литературе. Известна литорея двух родов: простая и мудрая. Простая, иначе называемая тарабарской грамотой, заключается в следующем. Если «е» и «ё» считать за одну букву, то в русском алфавите остаётся тридцать две буквы, которые можно записать в два ряда - по шестнадцать букв в каждом:

Получится русский аналог шифра ROT13 - РОТ16 :) При шифровке верхнюю букву меняют на нижнюю, а нижнюю - на верхнюю. Ещё более простой вариант литореи - оставляют только двадцать согласных букв:

Получается шифр РОТ10 . При шифровании меняют только согласные, а гласные и остальные, не попавшие в таблицу, оставляют как есть. Получается что-то типа «словарь → лсошамь» и т.п.

Если же в качестве ключа использовать целую книгу (например, словарь), то можно зашифровывать не отдельные буквы, а целые слова и даже фразы. Тогда координатами слова будут номер страницы, номер строки и номер слова в строке. На каждое слово получится три числа. Можно также использовать внутреннюю нотацию книги - главы, абзацы и т.п. Например, в качестве кодовой книги удобно использовать Библию, ведь там есть четкое разделение на главы, и каждый стих имеет свою маркировку, что позволяет легко найти нужную строку текста. Правда, в Библии нет современных слов типа «компьютер» и «интернет», поэтому для современных фраз лучше, конечно, использовать энциклопедический или толковый словарь. Хотя если заранее договориться о некой применяемой фене, например, «смоковница» - это «компьютер», «грех» - это «байт» и т.п., то на основании Библии можно будет шифровать и современные тексты.

Это были шифры замены, в которых буквы заменяются на другие. А ещё бывают , в которых буквы не заменяются, а перемешиваются между собой.

Тема: "Криптография. Шифры, их виды и свойства"


Введение

1. История криптографии

2. Шифры, их виды и свойства

Заключение

Список литературы


Введение

То, что информация имеет ценность, люди осознали очень давно - недаром переписка сильных мира сего издавна была объектом пристального внимания их недругов и друзей. Тогда-то и возникла задача защиты этой переписки от чрезмерно любопытных глаз. Древние пытались использовать для решения этой задачи самые разнообразные методы, и одним из них была тайнопись - умение составлять сообщения таким образом, чтобы его смысл был недоступен никому кроме посвященных в тайну. Есть свидетельства тому, что искусство тайнописи зародилось еще в доантичные времена. На протяжении всей своей многовековой истории, вплоть до совсем недавнего времени, это искусство служило немногим, в основном верхушке общества, не выходя за пределы резиденций глав государств, посольств и - конечно же - разведывательных миссий. И лишь несколько десятилетий назад все изменилось коренным образом - информация приобрела самостоятельную коммерческую ценность и стала широко распространенным, почти обычным товаром. Ее производят, хранят, транспортируют, продают и покупают, а значит - воруют и подделывают - и, следовательно, ее необходимо защищать. Современное общество все в большей степени становится информационно обусловленным, успех любого вида деятельности все сильней зависит от обладания определенными сведениями и от отсутствия их у конкурентов. И чем сильней проявляется указанный эффект, тем больше потенциальные убытки от злоупотреблений в информационной сфере, и тем больше потребность в защите информации.

Широкое применение компьютерных технологий и постоянное увеличение объема информационных потоков вызывает постоянный рост интереса к криптографии. В последнее время увеличивается роль программных средств защиты информации, не требующих крупных финансовых затрат в сравнении с аппаратными криптосистемами. Современные методы шифрования гарантируют практически абсолютную защиту данных.

Целью данной работы является знакомство с криптографией; шифрами, их видами и свойствами.

Ознакомиться с криптографией

Рассмотреть шифры, их виды и свойства


1. История криптографии

Перед тем как приступить к собственно истории криптографии необходимо прокомментировать ряд определений, так как без этого все нижесказанное будет "слегка" затруднительным для понимания:

Под конфиденциальностью понимают невозможность получения информации из преобразованного массива без знания дополнительной информации (ключа).

Аутентичность информации состоит в подлинности авторства и целостности.

Криптоанализ объединяет математические методы нарушения конфиденциальности и аутентичности информации без знания ключей.

Алфавит - конечное множество используемых для кодирования информации знаков.

Текст - упорядоченный набор из элементов алфавита. В качестве примеров алфавитов можно привести следующие:

алфавит Z 33 - 32 буквы русского алфавита (исключая "ё") и пробел;

алфавит Z 256 - символы, входящие в стандартные коды ASCII и КОИ-8;

двоичный алфавит - Z 2 = {0, 1};

восьмеричный или шестнадцатеричный алфавит

Под шифром понимается совокупность обратимых преобразований множества открытых данных на множество зашифрованных данных, заданных алгоритмом криптографического преобразования. В шифре всегда различают два элемента: алгоритм и ключ. Алгоритм позволяет использовать сравнительно короткий ключ для шифрования сколь угодно большого текста.

Криптографическая система, или шифр представляет собой семейство Т обратимых преобразований открытого текста в шифрованный. Членам этого семейства можно взаимно однозначно сопоставить число k, называемое ключом. Преобразование Тk определяется соответствующим алгоритмом и значением ключа k.

Ключ - конкретное секретное состояние некоторых параметров алгоритма криптографического преобразования данных, обеспечивающее выбор одного варианта из совокупности всевозможных для данного алгоритма. Секретность ключа должна обеспечивать невозможность восстановления исходного текста по шифрованному.

Пространство ключей K - это набор возможных значений ключа.

Обычно ключ представляет собой последовательный ряд букв алфавита. Следует отличать понятия "ключ" и "пароль". Пароль также является секретной последовательностью букв алфавита, однако используется не для шифрования (как ключ), а для аутентификации субъектов.

Электронной (цифровой) подписью называется присоединяемое к тексту его криптографическое преобразование, которое позволяет при получении текста другим пользователем проверить авторство и целостность сообщения.

Зашифрованием данных называется процесс преобразования открытых данных в зашифрованные с помощью шифра, а расшифрованием данных - процесс преобразования закрытых данных в открытые с помощью шифра.

Дешифрованием называется процесс преобразования закрытых данных в открытые при неизвестном ключе и, возможно, неизвестном алгоритме, т.е. методами криптоанализа.

Шифрованием называется процесс зашифрования или расшифрования данных. Также термин шифрование используется как синоним зашифрования. Однако неверно в качестве синонима шифрования использовать термин "кодирование" (а вместо "шифра" - "код"), так как под кодированием обычно понимают представление информации в виде знаков (букв алфавита).

Криптостойкостью называется характеристика шифра, определяющая его стойкость к дешифрованию. Обычно эта характеристика определяется периодом времени, необходимым для дешифрования.

С распространением письменности в человеческом обществе появилась потребность в обмене письмами и сообщениями, что вызвало необходимость сокрытия содержимого письменных сообщений от посторонних. Методы сокрытия содержимого письменных сообщений можно разделить на три группы. К первой группе относятся методы маскировки или стеганографии, которые осуществляют сокрытие самого факта наличия сообщения; вторую группу составляют различные методы тайнописи или криптографии (от греческих слов ktyptos - тайный и grapho - пишу); методы третьей группы ориентированы на создание специальных технических устройств, засекречивания информации.

В истории криптографии условно можно выделить четыре этапа: наивный, формальный, научный, компьютерный.

1. Для наивной криптографии (до начала XVI в) характерно использование любых, обычно примитивных, способов запутывания противника относительно содержания шифруемых текстов. На начальном этапе для защиты информации использовались методы кодирования и стеганографии, которые родственны, но не тождественны криптографии.

Большинство из используемых шифров сводились к перестановке или моноалфавитной подстановке. Одним из первых зафиксированных примеров является шифр Цезаря, состоящий в замене каждой буквы исходного текста на другую, отстоящую от нее в алфавите на определенное число позиций. Другой шифр, полибианский квадрат, авторство которого приписывается греческому писателю Полибию, является общей моноалфавитной подстановкой, которая проводится с помощью случайно заполненной алфавитом квадратной таблицей (для греческого алфавита размер составляет 5 × 5). Каждая буква исходного текста заменяется на букву, стоящую в квадрате снизу от нее.

2. Этап формальной криптографии (конец XV - начало XX вв) связан с появлением формализованных и относительно стойких к ручному криптоанализу шифров. В европейских странах это произошло в эпоху Возрождения, когда развитие науки и торговли вызвало спрос на надежные способы защиты информации. Важная роль на этом этапе принадлежит Леону Батисте Альберти, итальянскому архитектору, который одним из первых предложил многоалфавитную подстановку. Данный шифр, получивший имя дипломата XVI в. Блеза Вижинера, состоял в последовательном "сложении" букв исходного текста с ключом (процедуру можно облегчить с помощью специальной таблицы). Его работа "Трактат о шифре" считается первой научной работой по криптологии. Одной из первых печатных работ, в которой обобщены и сформулированы известные на тот момент алгоритмы шифрования, является труд "Полиграфия" немецкого аббата Иоганна Трисемуса. Ему принадлежат два небольших, но важных открытия: способ заполнения полибианского квадрата (первые позиции заполняются с помощью легко запоминаемого ключевого слова, остальные - оставшимися буквами алфавита) и шифрование пар букв (биграмм). Простым, но стойким способом многоалфавитной замены (подстановки биграмм) является шифр Плейфера, который был открыт в начале XIX в. Чарльзом Уитстоном. Уитстону принадлежит и важное усовершенствование - шифрование "двойным квадратом". Шифры Плейфера и Уитстона использовались вплоть до первой мировой войны, так как с трудом поддавались ручному криптоанализу. В XIX в. голландец Керкхофф сформулировал главное требование к криптографическим системам, которое остается актуальным и поныне: секретность шифров должна быть основана на секретности ключа, но не алгоритма.

Наконец, последним словом в донаучной криптографии, которое обеспечило еще более высокую криптостойкость, а также позволило автоматизировать процесс шифрования стали роторные криптосистемы.

Одной из первых подобных систем стала изобретенная в 1790 г. Томасом Джефферсоном механическая машина. Многоалфавитная подстановка с помощью роторной машины реализуется вариацией взаимного положения вращающихся роторов, каждый из которых осуществляет "прошитую" в нем подстановку.

Практическое распространение роторные машины получили только в начале XX в. Одной из первых практически используемых машин, стала немецкая Enigma, разработанная в 1917 г. Эдвардом Хеберном и усовершенствованная Артуром Кирхом. Роторные машины активно использовались во время второй мировой войны. Помимо немецкой машины Enigma использовались также устройства Sigaba (США), Турех (Великобритания), Red, Orange и Purple (Япония). Роторные системы - вершина формальной криптографии, так как относительно просто реализовывали очень стойкие шифры. Успешные криптоатаки на роторные системы стали возможны только с появлением ЭВМ в начале 40-х гг.

3. Главная отличительная черта научной криптографии (1930 - 60-е гг.) - появление криптосистем со строгим математическим обоснованием криптостойкости. К началу 30-х гг. окончательно сформировались разделы математики, являющиеся научной основой криптологии: теория вероятностей и математическая статистика, общая алгебра, теория чисел, начали активно развиваться теория алгоритмов, теория информации, кибернетика. Своеобразным водоразделом стала работа Клода Шеннона "Теория связи в секретных системах", которая подвела научную базу под криптографию и криптоанализ. С этого времени стали говорить о криптологии (от греческого kryptos - тайный и logos - сообщение) - науке о преобразовании информации для обеспечения ее секретности. Этап развития криптографии и криптоанализа до 1949 г. стали называть донаучной криптологией.

Шеннон ввел понятия "рассеивание" и "перемешивание", обосновал возможность создания сколь угодно стойких криптосистем. В 1960-х гг. ведущие криптографические школы подошли к созданию блочных шифров, еще более стойких по сравнению с роторными криптосистемами, однако допускающих практическую реализацию только в виде цифровых электронных устройств.

4. Компьютерная криптография (с 1970-х гг.) обязана своим появлением вычислительным средствам с производительностью, достаточной для реализации криптосистем, обеспечивающих при большой скорости шифрования на несколько порядков более высокую криптостойкость, чем "ручные" и "механические" шифры.

Первым классом криптосистем, практическое применение которых стало возможно с появлением мощных и компактных вычислительных средств, стали блочные шифры. В 70-е гг. был разработан американский стандарт шифрования DES. Один из его авторов, Хорст Фейстель описал модель блочных шифров, на основе которой были построены другие, более стойкие симметричные криптосистемы, в том числе отечественный стандарт шифрования ГОСТ 28147-89.

С появлением DES обогатился и криптоанализ, для атак на американский алгоритм был создано несколько новых видов криптоанализа (линейный, дифференциальный и т.д.), практическая реализация которых опять же была возможна только с появлением мощных вычислительных систем. В середине 70-х гг. ХХ столетия произошел настоящий прорыв в современной криптографии - появление асимметричных криптосистем, которые не требовали передачи секретного ключа между сторонами. Здесь отправной точкой принято считать работу, опубликованную Уитфилдом Диффи и Мартином Хеллманом в 1976 г. под названием "Новые направления в современной криптографии". В ней впервые сформулированы принципы обмена шифрованной информацией без обмена секретным ключом. Независимо к идее асимметричных криптосистем подошел Ральф Меркли. Несколькими годами позже Рон Ривест, Ади Шамир и Леонард Адлеман открыли систему RSA, первую практическую асимметричную криптосистему, стойкость которой была основана на проблеме факторизации больших простых чисел. Асимметричная криптография открыла сразу несколько новых прикладных направлений, в частности системы электронной цифровой подписи (ЭЦП) и электронных денег.

В 1980-90-е гг. появились совершенно новые направления криптографии: вероятностное шифрование, квантовая криптография и другие. Осознание их практической ценности еще впереди. Актуальной остается и задача совершенствования симметричных криптосистем. В этот же период были разработаны нефейстелевские шифры (SAFER, RC6 и др.), а в 2000 г. после открытого международного конкурса был принят новый национальный стандарт шифрования США - AES.

Таким образом, мы узнали следующее:

Криптология - это наука о преобразовании информации для обеспечения ее секретности, состоящая из двух ветвей: криптографии и криптоанализа.

Криптоанализ - наука (и практика ее применения) о методах и способах вскрытия шифров.

Криптография - наука о способах преобразования (шифрования) информации с целью ее защиты от незаконных пользователей. Исторически первой задачей криптографии была защита передаваемых текстовых сообщений от несанкционированного ознакомления с их содержанием, известного только отправителю и получателю, все методы шифрования являются лишь развитием этой философской идеи. С усложнением информационных взаимодействий в человеческом обществе возникли и продолжают возникать новые задачи по их защите, некоторые из них были решены в рамках криптографии, что потребовало развития новых подходов и методов.


2. Шифры, их виды и свойства

В криптографии криптографические системы (или шифры) классифицируются следующим образом:

симметричные криптосистемы

асимметричные криптосистемы

2.1 Симметричные криптографические системы

Под симметричными криптографическими системами понимаются такие криптосистемы, в которых для шифрования и расшифрования используется один и тот же ключ, хранящийся в секрете. Все многообразие симметричных криптосистем основывается на следующих базовых классах:

I. Моно - и многоалфавитные подстановки.

Моноалфавитные подстановки - это наиболее простой вид преобразований, заключающийся в замене символов исходного текста на другие (того же алфавита) по более или менее сложному правилу. В случае моноалфавитных подстановок каждый символ исходного текста преобразуется в символ шифрованного текста по одному и тому же закону. При многоалфавитной подстановке закон преобразования меняется от символа к символу. Один и тот же шифр может рассматриваться и как моно - и как многоалфавитный в зависимости от определяемого алфавита.

Например, самой простой разновидностью является прямая (простая) замена, когда буквы шифруемого сообщения заменяются другими буквами того же самого или некоторого другого алфавита. Таблица замены может иметь следующий вид:


Исходные символы шифруемого текста а б в г д е ж з и к л м н о п р с т у ф
Заменяющие символы s р x l r z i m a y e d w t b g v n j o

Используя эту таблицу, зашифруем слово победа. Получим следующее: btpzrs

II. Перестановки - также несложный метод криптографического преобразования, заключающийся в перестановке местами символов исходного текста по некоторому правилу. Шифры перестановок в настоящее время не используются в чистом виде, так как их криптостойкость недостаточна, но они входят в качестве элемента в очень многие современные криптосистемы.

Самая простая перестановка - написать исходный текст наоборот и одновременно разбить шифрограмму на пятерки букв. Например, из фразы

ПУСТЬ БУДЕТ ТАК, КАК МЫ ХОТЕЛИ

получится такой шифротекст:

ИЛЕТО ХЫМКА ККАТТ ЕДУБЪ ТСУП

В последней пятерке не хватает одной буквы. Значит, прежде чем шифровать исходное выражение, следует его дополнить незначащей буквой (например, О) до числа, кратного пяти, тогда шифрограмма, несмотря на столь незначительные изменения, будет выглядеть по-другому:

ОИЛЕТ ОХЫМК АККАТ ТЕДУБ ЬТСУП

III. Блочные шифры - семейство обратимых преобразований блоков (частей фиксированной длины) исходного текста. Фактически блочный шифр - это система подстановки на алфавите блоков. Она может быть моно - или многоалфавитной в зависимости от режима блочного шифра. Иначе говоря, при блочном шифровании информация разбивается на блоки фиксированной длины и шифруется поблочно. Блочные шифры бывают двух основных видов: шифры перестановки (transposition, permutation, P-блоки) и шифры замены (подстановки, substitution, S-блоки) . В настоящее время блочные шифры наиболее распространены на практике.

Американский стандарт криптографического закрытия данных DES (Data Encryption Standard), принятый в 1978 г., является типичным представителем семейства блочных шифров и одним из наиболее распространенных криптографических стандартов на шифрование данных, применяемых в США. Этот шифр допускает эффективную аппаратную и программную реализацию, причем возможно достижение скоростей шифрования до нескольких мегабайт в секунду. Первоначально метод, лежащий в основе данного стандарта, был разработан фирмой IBM для своих целей. Он был проверен Агентством Национальной Безопасности США, которое не обнаружило в нем статистических или математических изъянов.

DES имеет блоки по 64 бит и основан на 16-кратной перестановке данных, также для шифрования использует ключ в 56 бит. Существует несколько режимов DES: Electronic Code Book (ECB) и Cipher Block Chaining (CBC).56 бит - это 8 семибитовых символов, т.е. пароль не может быть больше чем восемь букв. Если вдобавок использовать только буквы и цифры, то количество возможных вариантов будет существенно меньше максимально возможных 2 56 . Однако, данный алгоритм, являясь первым опытом стандарта шифрования, имеет ряд недостатков. За время, прошедшее после создания DES, компьютерная техника развилась настолько быстро, что оказалось возможным осуществлять исчерпывающий перебор ключей и тем самым раскрывать шифр. В 1998 г. была построена машина, способная восстановить ключ за среднее время в трое суток. Таким образом, DES, при его использовании стандартным образом, уже стал далеко не оптимальным выбором для удовлетворения требованиям скрытности данных. Позднее стали появляться модификации DESa, одной из которой является Triple Des ("тройной DES" - так как трижды шифрует информацию обычным DESом). Он свободен от основного недостатка прежнего варианта - короткого ключа: он здесь в два раза длиннее. Но зато, как оказалось, Triple DES унаследовал другие слабые стороны своего предшественника: отсутствие возможности для параллельных вычислений при шифровании и низкую скорость.

IV. Гаммирование - преобразование исходного текста, при котором символы исходного текста складываются с символами псевдослучайной последовательности (гамме), вырабатываемой по некоторому правилу. В качестве гаммы может быть использована любая последовательность случайных символов. Процедуру наложения гаммы на исходный текст можно осуществить двумя способами. При первом способе символы исходного текста и гаммы заменяются цифровыми эквивалентами, которые затем складываются по модулю k, где k - число символов в алфавите. При втором методе символы исходного текста и гаммы представляются в виде двоичного кода, затем соответствующие разряды складываются по модулю 2. Вместо сложения по модулю 2 при гаммировании можно использовать и другие логические операции.

Таким образом, симметричными криптографическими системами являются криптосистемы, в которых для шифрования и расшифрования используется один и тот же ключ. Достаточно эффективным средством повышения стойкости шифрования является комбинированное использование нескольких различных способов шифрования. Основным недостатком симметричного шифрования является то, что секретный ключ должен быть известен и отправителю, и получателю.

2.2 Асимметричные криптографические системы

Еще одним обширным классом криптографических систем являются так называемые асимметричные или двухключевые системы. Эти системы характеризуются тем, что для шифрования и для расшифрования используются разные ключи, связанные между собой некоторой зависимостью. Применение таких шифров стало возможным благодаря К. Шеннону, предложившему строить шифр таким способом, чтобы его раскрытие было эквивалентно решению математической задачи, требующей выполнения объемов вычислений, превосходящих возможности современных ЭВМ (например, операции с большими простыми числами и их произведениями). Один из ключей (например, ключ шифрования) может быть сделан общедоступным, и в этом случае проблема получения общего секретного ключа для связи отпадает. Если сделать общедоступным ключ расшифрования, то на базе полученной системы можно построить систему аутентификации передаваемых сообщений. Поскольку в большинстве случаев один ключ из пары делается общедоступным, такие системы получили также название криптосистем с открытым ключом. Первый ключ не является секретным и может быть опубликован для использования всеми пользователями системы, которые зашифровывают данные. Расшифрование данных с помощью известного ключа невозможно. Для расшифрования данных получатель зашифрованной информации использует второй ключ, который является секретным. Разумеется, ключ расшифрования не может быть определен из ключа зашифрования.

Центральным понятием в асимметричных криптографических системах является понятие односторонней функции.

Под односторонней функцией понимается эффективно вычислимая функция, для обращения которой (т.е. для поиска хотя бы одного значения аргумента по заданному значению функции) не существует эффективных алгоритмов.

Функцией-ловушкой называется односторонняя функция, для которой обратную функцию вычислить просто, если имеется некоторая дополнительная информация, и сложно, если такая информация отсутствует.

Все шифры этого класса основаны на так называемых функциях-ловушках. Примером такой функции может служить операция умножения. Вычислить произведение двух целых чисел очень просто, однако эффективных алгоритмов для выполнения обратной операции (разложения числа на целые сомножители) - не существует. Обратное преобразование возможно лишь, если известна, какая-то дополнительная информация.

В криптографии очень часто используются и так называемые хэш-функции. Хэш-функции - это односторонние функции, которые предназначены для контроля целостности данных. При передаче информации на стороне отправителя она хешируется, хэш передается получателю вместе с сообщением, и получатель вычисляет хэш этой информации повторно. Если оба хэша совпали, то это означает, что информация была передана без искажений. Тема хэш-функций достаточно обширна и интересна. И область ее применения гораздо больше чем просто криптография.

В настоящее время наиболее развитым методом криптографической защиты информации с известным ключом является RSA, названный так по начальным буквам фамилий его изобретателей (Rivest, Shamir и Adleman) и представляющий собой криптосистему, стойкость которой основана на сложности решения задачи разложения числа на простые сомножители. Простыми называются такие числа, которые не имеют делителей, кроме самих себя и единицы. А взаимно простыми называются числа, не имеющие общих делителей, кроме 1.

Для примера выберем два очень больших простых числа (большие исходные числа нужны для построения больших криптостойких ключей). Определим параметр n как результат перемножения р и q. Выберем большое случайное число и назовем его d, причем оно должно быть взаимно простым с результатом умножения (р - 1) * (q - 1). Найдем такое число e, для которого верно соотношение:

(e*d) mod ((р - 1) * (q - 1)) = 1

(mod - остаток от деления, т.е. если e, умноженное на d, поделить на ((р - 1) * (q - 1)), то в остатке получим 1).

Открытым ключом является пара чисел e и n, а закрытым - d и n. При шифровании исходный текст рассматривается как числовой ряд, и над каждым его числом мы совершаем операцию:

C (i) = (M (i) e) mod n

В результате получается последовательность C (i), которая и составит криптотекст.д.екодирование информации происходит по формуле

M (i) = (C (i) d) mod n

Как видите, расшифровка предполагает знание секретного ключа.

Попробуем на маленьких числах. Установим р=3, q=7. Тогда n=р*q=21. Выбираем d как 5. Из формулы (e*5) mod 12=1 вычисляем e=17. Открытый ключ 17, 21, секретный - 5, 21.

Зашифруем последовательность "2345":

C (2) = 2 17 mod 21 =11

C (3) = 3 17 mod 21= 12

C (4) = 4 17 mod 21= 16

C (5) = 5 17 mod 21= 17

Криптотекст - 11 12 16 17.

Проверим расшифровкой:

M (2) = 11 5 mod 21= 2

M (3) = 12 5 mod 21= 3

M (4) = 16 5 mod 21= 4

M (5) = 17 5 mod 21= 5

Как видим, результат совпал.

Криптосистема RSA широко применяется в Интернете. Когда пользователь подсоединяется к защищенному серверу, то здесь применяется шифрование открытым ключом с использованием идей алгоритма RSA. Криптостойкость RSA основывается на том предположении, что исключительно трудно, если вообще реально, определить закрытый ключ из открытого. Для этого требовалось решить задачу о существовании делителей огромного целого числа. До сих пор ее аналитическими методами никто не решил, и алгоритм RSA можно взломать лишь путем полного перебора.

Таким образом, асимметричные криптографические системы - это системы, в которых для шифрования и для расшифрования используются разные ключи. Один из ключей даже может быть сделан общедоступным. При этом расшифрование данных с помощью известного ключа невозможно.


Заключение

Криптография - наука о математических методах обеспечения конфиденциальности (невозможности прочтения информации посторонним) и аутентичности (целостности и подлинности авторства, а также невозможности отказа от авторства) информации. Изначально криптография изучала методы шифрования информации - обратимого преобразования открытого (исходного) текста на основе секретного алгоритма и ключа в шифрованный текст. Традиционная криптография образует раздел симметричных криптосистем, в которых зашифрование и расшифрование проводится с использованием одного и того же секретного ключа. Помимо этого раздела современная криптография включает в себя асимметричные криптосистемы, системы электронной цифровой подписи (ЭЦП), хеш-функции, управление ключами, получение скрытой информации, квантовую криптографию.

Криптография является одним из наиболее мощных средств обеспечения конфиденциальности и контроля целостности информации. Во многих отношениях она занимает центральное место среди программно-технических регуляторов безопасности. Например, для портативных компьютеров, физически защитить которые крайне трудно, только криптография позволяет гарантировать конфиденциальность информации даже в случае кражи.


Список литературы

1. Златопольский Д.М. Простейшие методы шифрования текста. /Д.М. Златопольский - М.: Чистые пруды, 2007

2. Молдовян А. Криптография. /А. Молдовян, Н.А. Молдовян, Б.Я. Советов - СПб: Лань, 2001

3. Яковлев А.В., Безбогов А.А., Родин В.В., Шамкин В.Н. Криптографическая защита информации. /Учебное пособие - Тамбов: Изд-во Тамб. гос. техн. ун-та, 2006

4. http://ru. wikipedia.org

5. http://cryptoblog.ru

6. http://Stfw.ru

7. http://www.contrterror. tsure.ru


Молдовян А. Криптография./А. Молдовян, Н. А. Молдовян, Б. Я. Советов – СПб: Лань, 2001

Действий в сфере информационных технологий. Таким образом, можно считать актуальным и значительным старших классов изучение элективного курса «Компьютерная и информационная безопасность» в образовательной области «Информатика». Курс ориентирован на подготовку подрастающего поколения к жизни и деятельности в совершенно новых условиях информационного общества, в котором вопросы обеспечения...

Когда наконец удается разгадать сложный шифр, в нем могут оказаться тайны мировых лидеров, секретных обществ и древних цивилизаций. Перед вами - десятка самых загадочных шифров в истории человечества, которые до сих пор не удалось разгадать.

Спонсор поста: люстры и светильники

Записки Рики Маккормика

В июне 1999 года через 72 часа после того, как один человек был объявлен пропавшим без вести, на кукурузном поле в штате Миссури обнаружили тело. Что странно, труп разложился сильнее, чем должен был за такое время. На момент смерти у 41-летнего Рики Маккормика в карманах лежали две зашифрованные записки. Он был безработным с неоконченным школьным образованием, жил на пособие, и у него не было машины. Еще Маккормик отсидел в тюрьме за изнасилование несовершеннолетней. В последний раз его видели живым за пять дней до того, как его тело было найдено, - когда он пришел на плановый осмотр в больницу Форест-Парк в Сент-Луисе.

Ни подразделение криптоанализа ФБР, ни Американская криптоаналитическая ассоциация так и не смогли расшифровать эти записки и обнародовали их через 12 лет после убийства. Следователи полагают, что таинственные записки были написаны примерно за три дня до убийства. Родственники Маккормика утверждают, что убитый использовал такую технику кодирования сообщений с детства, но, к сожалению, никто из них не знает ключа к этому шифру.

Криптос

Это скульптура американского художника Джима Санборна, которая установлена перед входом в штаб-квартиру ЦРУ в Лэнгли, штат Вирджиния. Она содержит четыре сложных зашифрованных сообщения, три из которых были расшифрованы. До сих пор нерасшифрованными остаются 97 символов последней части, известной как К4.

Заместитель главы ЦРУ в 1990-е годы Билл Стадмен поставил АНБ задачу расшифровать надписи. Была создана специальная команда, которая смогла разгадать три из четырех сообщений в 1992 году, но не обнародовала их до 2000 года. Также три части разгадали в 1990-е годы аналитик ЦРУ Дэвид Стейн, который использовал бумагу и карандаш, и специалист по информатике Джим Гиллогли, который использовал компьютер.

Расшифрованные сообщения напоминают переписку ЦРУ, а скульптура по форме похожа на бумагу, выходящую из принтера во время печати.

Рукопись Войнича

Рукопись Войнича, созданная в XV веке, - одна из самых знаменитых загадок эпохи Возрождения. Книга носит имя антиквара Вильфрида Войнича, купившего ее в 1912 году. Она содержит 240 страниц, и каких-то страниц не хватает. В рукописи полно биологических, астрономических, космологических и фармацевтических иллюстраций. Здесь даже есть загадочная раскладывающаяся астрономическая таблица. Всего манускрипт содержит более 170 тысяч символов, которые не соответствуют каким-либо правилам. Нет ни пунктуации, ни разрывов в написании зашифрованных символов, что нетипично для рукописного зашифрованного текста. Кто создал эту рукопись? Исследователь? Травник? Алхимик? Книга когда-то предположительно принадлежала императору Священной Римской империи Рудольфу II, который увлекался астрологией и алхимией.

Леон Баттиста Альберти, итальянский писатель, художник, архитектор, поэт, священник, лингвист и философ, не мог выбрать какое-то одно занятие. Сегодня он известен как отец западной криптографии, и он жил в те же годы, когда была создана рукопись. Он создал первый полиалфавитный шифр и первую механическую шифровальную машину. Может, рукопись Войнича - один из первых экспериментов в криптографии? Если код рукописи Войнича расшифруют, это может изменить наши знания об истории наук и астрономии.

Надпись Шагборо

Пастуший монумент находится в живописном Стаффордшире в Англии. Он был возведен в XVIII веке, и это скульптурная интерпретация картины Николя Пуссена «Аркадийские пастухи», однако некоторые детали изменены. Под картиной - текст из 10 букв: последовательность O U O S V A V V между буквами D и M. Над изображением картины - две каменные головы: улыбающийся лысый мужчина и мужчина с козлиными рогами и острыми ушами. Согласно одной из версий, человек, который оплатил памятник, Джордж Ансон, написал аббревиатуру латинского высказывания «Optimae Uxoris Optimae Sororis Viduus Amantissimus Vovit Virtutibus», которое означает «Лучшей из жен, лучшей из сестер, преданный вдовец посвящает это вашим добродетелям».

Бывший лингвист ЦРУ Кит Мэсси связал эти буквы со строфой Евангелия от Иоанна 14:6. Другие исследователи считают, что шифр связан с масонством. Бывший аналитик Блетчли-парка Оливер Лоун предположил, что код может быть отсылкой к генеалогическому древу Иисуса, что маловероятно. Ричард Кемп, глава поместья Шагборо, инициировал в 2004 году рекламную кампанию, которая связывала надпись с местонахождением Святого Грааля.

Линейное письмо А

Линейное письмо А - это разновидность критского письма, содержащая сотни символов и до сих пор не расшифрованная. Оно использовалось несколькими древнегреческими цивилизациями в период с 1850 по 1400 год до н.э. После вторжения на Крит ахейцев ему на смену пришло Линейное письмо Б, которое расшифровали в 1950-х годах, и оказалось, что это одна из ранних форм греческого языка. Линейное письмо А так и не смогли расшифровать, и коды к Линейному письму Б для него не подходят. Чтение большинства знаков известно, но язык остается непонятным. В основном его следы находили на Крите, однако встречались памятники письменности на этом языке и в материковой Греции, Израиле, Турции, и даже в Болгарии.

Считается, что Линейное письмо А, которое называют предшественником крито-минойского письма, - это именно то, что можно увидеть на Фестском диске, одной из самых известных археологических загадок. Это диск из обожженной глины диаметром примерно 16 см, датируемый вторым тысячелетием до н.э. и найденный в Фестском дворце на Крите. Он покрыт символами неизвестного происхождения и значения.

Через 1000 лет после крито-минойского появился этеокритский язык, который не подлежит классификации и может быть как-то связан с Линейным письмом А. Он записывается буквами греческого алфавита, но это точно не греческий язык.

Шифр Дорабелла

Английский композитор Эдуард Элгар также очень интересовался криптологией. В память о нем первые шифровальные машины начала XX века назывались в честь его произведения «Энигма-вариации». Машины «Энигма» были способны зашифровывать и дешифровать сообщения. Элгар отправил своей подруге Доре Пенни «записку Дорабелле» - именно так он называл подругу, которая была младше его на двадцать лет. Он уже был счастливо женат на другой женщине. Может, у него с Пенни был роман? Она так и не расшифровала код, который он ей послал, и никто другой так и не смог этого сделать.

Криптограммы Бейла

Мужчина из Вирджинии, который создает шифры с тайнами спрятанных сокровищ, - это что-то из области произведений Дэна Брауна, а не из реального мира. В 1865 году была опубликована брошюра, описывающая огромное сокровище, которое сегодня бы стоило более 60 миллионов долларов. Оно якобы было зарыто на территории округа Бедфорд уже 50 лет. Возможно, человек, который это сделал, Томас Дж. Бейл, никогда не существовал. Но в брошюре было указано, что Бейл передал коробку с тремя зашифрованными сообщениями владельцу гостиницы, который на протяжении нескольких десятилетий ничего с ними не делал. О Бейле больше ничего не было слышно.

В единственном сообщении Бейла, которое было расшифровано, говорится, что автор оставил огромное количество золота, серебра и драгоценностей в каменном погребе на глубине шесть футов. Также там говорится, что в другом шифре описано точное местонахождение погреба, поэтому не должно возникнуть никаких сложностей в его обнаружении. Некоторые скептики считают, что сокровища Бейла - утка, которая удачно использовалась для продажи брошюр по 50 центов, что в переводе на современные деньги будет 13 долларов.

Загадки убийцы Зодиака

Знаменитый серийный убийца из Калифорнии по прозвищу Зодиак дразнил полицию Сан-Франциско несколькими шифрами, утверждая, что некоторые из них раскроют местонахождение бомб, заложенных по всему городу. Он подписывал письма кругом и крестом - символом, обозначающим Зодиак, небесный пояс из тринадцати созвездий.

Зодиак также отправил три письма в три разные газеты, в каждом из которых содержалась треть от шифра из 408 символов. Школьный учитель из Салинаса увидел символы в местной газете и разгадал шифр. В сообщении говорилось: «Мне нравится убивать людей, потому что это очень весело. Это веселее, чем убивать диких животных в лесу, потому что человек - самое опасное животное из всех. Убийство дает мне самые острые ощущения. Это даже лучше секса. Самое лучшее ждет, когда я умру. Я снова появлюсь на свет в раю, и все, кого я убил, станут моими рабами. Я не скажу вам моего имени, потому что вы захотите замедлить или остановить набор рабов для моей загробной жизни».

Зодиак взял ответственность за убийство 37 человек и так и не был найден. По всему миру у него появились подражатели.

Таман Шуд

В декабре 1948 года на пляже Сомертона в Австралии нашли тело мужчины. Личность умершего так и не удалось установить, а дело окутано тайной по сей день. Мужчину могли убить не оставляющим следов ядом, но даже причина смерти неизвестна. Человек из Сомертона был одет в белую рубашку, галстук, коричневый вязаный пуловер и серо-коричневый пиджак. Бирки с одежды были срезаны, а бумажник отсутствовал. Зубы не соответствовали каким-либо имеющимся стоматологическим записям.

В кармане у неизвестного обнаружили кусочек бумаги со словами «tamam shud», или «законченный» по-персидски. В дальнейшем при публикации материала на эту тему в одной из газет была допущена опечатка: вместо «Tamam» было напечатано слово «Taman», в результате чего в историю вошло именно ошибочное название. Это был обрывок страницы из редкого издания сборника «Рубайат» персидского поэта XII века Омара Хайяма. Книга была найдена, и на внутренней стороне обложки был написан местный номер телефона и зашифрованное сообщение. Кроме того, в камере хранения близлежащей железнодорожной станции нашли чемодан с вещами, но это не помогло установить личность убитого. Может, человек из Сомертона был шпионом холодной войны под глубоким прикрытием? Криптограф-любитель? Годы проходят, но исследователи так и не приблизились к разгадке.

Блиц-шифры

Эта загадка - самая новая из всех перечисленных, так как была обнародована только в 2011 году. Блиц-шифры - это несколько страниц, обнаруженных во время Второй мировой войны. Они лежали годами в деревянных ящиках в одном из подвалов Лондона, который был раскрыт в результате немецких бомбовых ударов. Один солдат взял с собой эти бумаги, и оказалось, что в них полно странных чертежей и зашифрованных слов. Документы содержат более 50 уникальных символов, напоминающих каллиграфические. Датировать документы не удается, однако, согласно популярной версии, блиц-шифры - дело рук оккультистов или масонов XVIII века.

Шифры существуют для того, чтобы скрыть ценную информацию и сохранить секрет. И если удается разгадать написанное, то можно узнать тайну какой-то личности, координаты клада или даже историю целой цивилизации. Но существуют послания, которые столетиями остаются неразгаданными.
Учёные до сих пор бьются над , но даже его предсказания покажутся сущей безделицей по сравнению с этими 9 загадочными и необычными зашифрованными посланиями, за которыми, вероятно, скрывается нечто великое.

№ 1. Кодекс Серафини


Книга, написанная в конце 70-х годов итальянским архитектором Луиджи Серафини. Это 360-страничный атлас вымышленного мира, расписанный до мельчайших деталей (фауна, архитектура, законы природы, история, языки, развлечения).
Но главная загадка в том, что кодекс написан от руки зашифрованным текстом, который так никто и не смог разгадать. Хотя автор книги еще жив, он наотрез отказывается говорить, настоящий ли это вообще язык. Есть версия, что книга передает мироощущение ребенка.

№ 2. Послания Зодиака

Зодиак - неуловимый серийный убийца, который держал в страхе весь Сан-Франциско в 1968–1969 годах.
Он утверждал, что его настоящее имя можно будет узнать, только если прочитать все 4 части шифра, которые он отправил в полицейский участок. В итоге детективам удалось расшифровать только 3 части. Последние 18 знаков остаются загадкой. Возможно, именно там написано имя убийцы.

№ 3. Криптограммы Бейла

В 1822 году некий Томас Джефферсон Бейл передал коробку и ключ хозяину одной гостиницы и сказал бережно ее хранить. После чего Бейл бесследно исчез. Коробка была открыта только в 1843 году. Внутри было три листа бумаги с шифровками и подписями содержания. В первой записке были координаты, во второй - содержимое тайника, а в третьей - имена наследников.
Удалось расшифровать только вторую записку. Там говорилось о «трех вагонах золота», которые находятся в штате Виргиния где-то в округе Бедфорд. В пересчете на современные деньги клад составляет $ 30 млн. Остальные две записки с точными координатами так и не удалось прочесть никому.

№ 4. Шифр Дорабелла

Английский композитор и криптолог Эдуард Элгар в 1897 году отправил закодированное послание (87 знаков) своей подруге Дорабелле Пенни. Записка содержит символы, похожие на пружинки. Однако девушке так и не удалось его разгадать.
Только через 40 лет она опубликовала послание в своих мемуарах, чем и заинтересовала общественность. Существует версия, что в сообщении зашифрована какая-то мелодия, которую Элгар посвятил девушке.

№ 5. Криптос



Криптос - медная скульптура, которая стоит возле главного офиса ЦРУ в городе Лэнгли (штат Виргиния). Художник Джеймс Сэнборн в 1990 году и поместил на скульптуру послание, которое зашифровал на 4 пластинах. При этом Сэнборн отметил, что послание может быть прочитано, только когда разгадают все 4 части.
На сегодня известно значение 3 из 4 секций. Над значением последних 97 знаков безуспешно бьются самые опытные криптографы вот уже 20 лет.

№ 6. Шифровка из Шаборо

В Стаффордшире (Великобритания) стоит монумент XVIII века, который отражает события картины Николя Пуссена «Аркадийские пастухи». Если взглянуть ближе, то на монументе можно увидеть странную последовательность букв DOUOSVAVVM - код, который не удается расшифровать никому больше 250 лет.
Узнать ответ на загадку пробовали многие, включая Чарлза Дарвина и Чарльза Диккенса, но безуспешно. Некоторые криптографы полагают, что код может быть подсказкой, оставленной тамплиерами, о месте нахождения Святого Грааля.

№ 7. Золотые слитки генерала Вана

В 1993 году генерал Ван (Wang) из Шанхая получил необычную посылку - 7 слитков золота, на каждый из которых были нанесены закодированные надписи. Шифр на слитках состоит из китайских иероглифов и криптограммы на латыни.
До сих пор отправитель, причина «подарка» и содержание послания остаются неясными.

№ 8. Шифр Рикки Маккормика

В июне 1999 года в Миссури на кукурузном поле было найдено тело 41-летнего Рикки Маккормика (Ricky McCormick). В его карманах полицейские обнаружили 2 странные записки с зашифрованным текстом. Расшифровать послание не смогли даже криптографы из ЦРУ. Тогда через 12 лет в надежде получить помощь полиция выложила записки в сеть. Но взломать шифр пока никому не удалось.

№ 9. Дело «Тамам Шуд»

1 декабря 1948 года на одном из пляжей Австралии было найдено тело мужчины. Вся его одежда была без ярлыков, а в скрытом кармане пальто был найден клочок бумаги с надписью «Тамам Шуд» (Tamam Shud), что значит «конец», «окончание».
Вскоре детективы нашли сборник персидской поэзии, из которой был вырван этот кусок бумаги, на задней обложке была выцарапана шифровка. Но смысл послания, личность и причину смерти погибшего так и не удалось разгадать.

Бонус: шифр Бэкона

Фрэнсис Бэкон был английским философом, историком и писателем. Он создал двухбуквенный шифр Бэкона, при помощи которого прятал своих текстах различные послания и подписи.
Существует так называемая бэконианская версия, которая говорит, что именно Бэкон был автором текстов, известных под именем Шекспир. В доказательство теории в текстах пьес Шекспира были найдены отрывки из биографии и подписи Бэкона.

© 2024 iteleradio.ru - Твой компьютер